The Synthesis of 7-[1-Aza-2-(dimethylamino)vinyl]-4-methylhydroquinolin-2-ones and their Isomerism in Different Solvents

Qian ZHANG,¹ Ying CHEN,¹ Yun Hong ZHENG,¹ Wan Yun SHENG,¹ Peng XIA¹* Yi XIA,² Zheng Yu YANG,² Kuo Hsiung LEE²

¹Department of Organic Chemistry, The School of Pharmacy, Shanghai Medical University, 138 Yi Xue Yuan Road, Shanghai 200032
²Natural Products Laboratory, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA

Abstract: The reaction of 7-amino-4-methyl-2(1H)-quinolone 1 and its 6-methyl derivative 2 with Vilsmeier reagent (DMF and POCl₃) afforded 7-[1-aza-2-(dimethylamino)vinyl]-4-methyl- hydro-quinolin-2-one 3 and 7-[1-aza-2-(dimethylamino)vinyl]-4,6-dimethylhydroquinolin- 2-one 4, respec-tively. ¹H-NMR analysis in different solvents indicated that isomerism occurred due to hindered rotation around the (CH₃)₂N–C:N σ -bond. The rotational energy barrier of 3 was calculated.

Keywords: 7-[1-Aza-2-(dimethylamino)vinyl]-hydroquinolin-2-ones, isomerism, ¹H-NMR.

Interesting biological activities reported have been recently for 4-methylhydro-2H-pyrano [6,5-h]-chromen-2-ones and 4-methylhydro-2*H*-pyrano[6,5-h]quinolin-2-ones, including excellent anti-HIV activity derivatives¹ with DCK significant and cytotoxic activity with 4,8,8-trimethylhydro-2*H*-pyrano[6,5-h]quinolin-2-one². These results prompted us to synthesize two series of corresponding diaza three-ring heterocyclic analogs, trihydropyridino[2,3-h]quinolin-2-ones and hydropyridino[2,3-h]quinolin-2-ones (Scheme 1).

We used 7-amino-4-methyl-2(1*H*)-quinolone 1 and its 6-methyl derivative 2 as starting materials and established the C-ring by intra- or inter-molecular electrophilic substitution with appropriate reagents and intermediates. However, many efforts failed because of the low nucleophilic reactivity of the B-ring. In order to find an electron-donating protective group for the 7-NH₂ of 1 and 2, we examined the reaction of these compounds with Vilsmeier reagent (DMF and POCl₃) and obtained 7-[1-aza-2-(di-methylamino)vinyl]-4-methyl-hydroquinolin-2-one 3 and 7-[1-aza-2-(dimethylamino) vinyl]-4,6-dimethyl-hydro- quinolin-2-one 4 respectively³. Their structures were identified from elemental analysis and ¹H-NMR (CDCl₃) spectral data (**Scheme 2** and **Table 1**).

Scheme 1

DCK derivatives

Hydropirido[2,3-h]quinolin-2-one

Table 1 Chemical shift (δ) of **3** and **4** in ¹H-NMR (CDCl₃)

Compd	N-H	N=C-H	5-H	6-H	8-H	3-H	N-Me ₂	4-Me	6-Me
3	10.45	7.62	7.54	6.89	6.76	6.39	3.06	2.45	
4	11.41	7.66	7.37		6.90	6.36	3.11	2.43	2.35

Unexpectedly, when the ¹H-NMR spectra were measured in DMSO-d₆ at room temperature, both **3** and **4** gave different spectra from those in CDCl₃ (**Table 2**). The single signal for the two methyls of the dimethylamino group in the latter solvent separated into two signals. To illustrate the nature of this phenomenon, we selected **3** as an example and determined its ¹H-NMR (DMSO-d₆) spectra at different temperatures. As the temperature rose, the two signals at δ 3.04 and 2.94 broadened continuously from

Synthesis of 7-[1-Aza-2-(dimethylamino)vinyl]-4methylhydroquinolin-2-ones

25°C and finally coalesced to a sharp single signal at δ 2.99 at 45 °C. After cooling to 25°C, the original spectrum was recovered; that means the sample was unchanged during the temperature elevation (**Table 3**). This experimental result suggested that isomerism occurred due to hindered rotation around the $(CH_3)_2N-C$: N σ-bond in DMSO. Reasonably, this obstacle to δ-bond rotation may result from partial π -bonding due to partial conjugation between the unshared electron pairs on the nitrogen atoms of the dimethylamino and imine (C=N) groups in the aprotic solvent as shown in **Scheme 3**. According to the above experimental data, 66.5 KJ/mol of free energy (ΔG^{\star}) of activation was calculated for the bond rotation in **3** as follows⁴:

 $\Delta G^{\neq} = RTc[23+ln(Tc/\Delta v)] \\ = 8.3 \times 10^{-3} Tc[23+2.3log(Tc/\Delta v)] \\ = 66.5 KJ/mol \\ Here Tc=273+45, \Delta v=29.24 Hz.$

Table 2 Chemical shift (δ) of **3** and **4** in ¹H-NMR (DMSO-d₆) at 25 °C

Compd	N-H	N=C-H	5-H	6-H	8-H	3-H	N-Me ₂	4-Me	6-Me
3	11.30	7.80	7.50	6.82	6.75	6.18	2.94 3.04	2.53	
4	11.20	7.59	7.39		6.58	6.14	2.99 3.01	2.35	2.21

 Table 3
 Chemical shift of N-methyls of 3 in ¹H-NMR(DMSO-d₆) at different temperature

Temperature (°C)	8	3	
25	3.04	2.94	
35	3.03	2.95	
40	3.02	2.97	
45	2	.99	

Scheme 3

At room temperature, the two methyl signals in **4** were initially broader than those of **3**. Thus, because the melting point of DMSO is 18.4°C, the maximum signal separation and corresponding ΔG^{\neq} could not be determined for **4**.

Using **3** as the key intermediate, hydropyridino[2,3-h]quinolin-2-one derivatives were synthesized. The synthetic methodology will be published elsewhere.

Acknowledgment

This investigation was supported in part by a grant from the Institute of Pharmacy, Shanghai Medical University. We would like to pay our special thanks to Dr. Susan L. Morris-Natschke for her revision of this manuscript.

Reference and Notes

- 1. (a) L. Huang, Y. Kashiwada, L. M. Cosentono, J. Med. Chem., 1994, 37, 3947;
- (b) L. Xie, Y.Takeuchi, L.M. Cosentono, Bioorg. Med. Chem., 1998, 8, 2151
- 2. Z. Y. Yang, Y. Xia, P. Xia, Y. Tachibana, K. F. Bastow, K. H. Lee, *Bioorg. Med. Chem. Lett.*, **1999**, *9*, 713.
- 3. Synthetic example: 7-[1-Aza-2-(dimethylamino)vinyl]-4-methylhydroquinolin-2-one (3): POCl₃ (0.45 mL, 4.60 mmol) was added dropwise to a mixture of 0.80 g (4.59 mmol) of 1 and 8 mL DMF at -5-0 °C. After stirring for 30 min at 0 °C, 20% Na₂CO₃ was added until pH=8. The precipitate was filtered and washed with ice water to give crude 3 in quantitative yield. Crystallization from chloroform gave colorless needle crystals. mp. 221-222°C; MS (m/z, %): 229 (M⁺, 100), 214 (M⁺-Me, 20.18), 44 (NMe₂⁺, 16.49); ¹H-NMR (CDCl₃) δ : 10.45 (s, 1H, N-H), 7.62 (s, 1H, N=C-H), 7.54 (d, J=8.60 Hz, 1H, 5-H), 6.89 (dd, J=8.60 Hz, J=2.04 Hz, 1H, 6-H), 6.76 (d, J=2.04 Hz, 1H, 8-H), 6.39 (s, 1H, 3-H), 3.06 (s, 6H, NMe₂), 2.45 (s, 3H, 4-Me). ¹H-NMR (DMSO- d_6 , 25°C) δ : 11.30 (s, 1H, N-H), 7.80 (s, 1H, N=C-H), 7.50 (d, J=8.67 Hz, 1H, 5-H), 6.82 (dd, J=8.67 Hz, J= 1.90 Hz, 1H, 6-H), 6.75 (d, J=1.90 Hz, 1H, 8-H), 6.18 (s, 1H, 3-H), 3.04 and 2.94 (2s, 6H, NMe₂), 2.53 (s, 3H, 4-Me). 7-[1-Aza-2-(dimethylamino)vinyl]-4,6-dimethylhydroquinolin-2-one (4): colorless needle crystals.mp. 258- 260 °C ; MS (m/z, %): 243 (M⁺, 100), 228 (M⁺-Me, 13.98), 199 (M⁺-NMe₂,53.44), 44 (NMe₂⁺, 8.56). ¹H-NMR (CDCl₃) δ : 11.41(s, 1H, N-H), 7.66 (s, 1H, N=C-H), 7.37 (s, 1H, 5-H), 6.90 (s, 1H, 8-H), 6.36 (s, 1H, 3-H), 3.11 (s, 6H, NMe₂), 2.43 (s, 3H, 4-Me), 2.35 (s, 3H, 6-Me). ¹H-NMR (DMSO-d₆, 25°C) δ : 11.20 (s, 1H, N-H), 7.59 (s, 1H, N=C-H), 7.39 (s, 1H, 5-H), 6.58 (s, 1H, 8-H), 6.14 (s, 1H, 3-H), 3.01 and 2.99 (2s, 6H, NMe₂), 2.35(s, 3H, 4-Me), 2.21 (s, 3H, 6-Me).
- F. A. Bovey, L. Jelinski, P. A. Mirau, Nuclear Magnetic Resonance Spectroscopy, 2nd ed., Academic Press Inc., 1988, p. 300.

Received June 12, 2000